
8 The Delphi Magazine Issue 42

OpenGL: Under The Hood
by John Hutchings

If you have a need for 3D graphics
and the good fortune to own a

powerful workstation then applica-
tions which use 3D APIs, such as
OpenGL, produce pretty impres-
sive results. The mining industry
needs to manipulate complex 3D
data sets representing a mine as
part of the mine planning process
and I have often envied the spec-
tacular graphics performance
achieved while ‘flying through’ an
open cut mine or rotating an ore
body. Recently, with a move to
Windows NT and the addition of
some decent hardware (dual
233Mhz Pentium Pro with a Dia-
mond Fire GL3000 graphics card
sporting the OpenGL accelerating
GLINT chip set and 16Mb of RAM),
I too can almost achieve that
impressive graphics performance.
The demonstration program
included with this month’s disk
will run at a smooth 25 to 30 frames
per second using the above hard-
ware and with a reasonably high
polygon count (the ‘random ter-
rain’ scene seen in Figure 1). Of
course, if I drop back to a system
without the hardware acceleration
the scene will run at a more pedes-
trian 2 to 10 frames per second.

I am involved with the writing of
customised 3D CAD based soft-
ware for mining related industries.
My need is for a powerful and flexi-
ble 3D API which will handle basic
3D primitives (including a 3D point,
3D line and 3D triangle) with the
potential to do a lot more in the
future. To date I have handled the
3D graphic pipeline by using a
simple 3D API to project 3D points
onto the screen and produce the
equivalent 2D screen coordinate
points. Then I use the Windows
GDI, through a Canvas, to draw my
3D objects. OpenGL will now allow
me to pass the 3D point directly to
the OpenGL API, which will handle
the data right through to drawing it
onto the screen. The API is highly
optimised and will obviously make
appropriate use of any hardware

acceleration which may be
present.

I have chosen OpenGL for a
number of reasons. Firstly, the API
seems to have a future with
Microsoft and with graphics card
manufacturers. Secondly, the API
is function and procedure driven,
which means an easier interface
from Pascal (the Inprise folk pro-
vide the v1.1 interface in the
OPENGL.PAS unit). Thirdly, the
system handles the basic 3D points
and 3D lines as well as 3D triangles
(polygons). Other Graphics APIs
do not handle them all. If I do not
need blistering animation speed
(as basic CAD systems don’t) then
the quality of the render is higher
than, say, Direct3D. It is always
possible (and seemingly accept-
able) to swap to a lower resolution
of rendering while moving. Lastly,
the system is tried, tested and well
thought out. I have always suc-
ceeded in doing what I need to do,
even if discovering just how to do it
can be frustrating.

For the rest of this article I will
discuss some of the implementa-
tion issues which arise in using
OpenGL, together with my solu-
tions. I have encapsulated the work

into a set of Delphi 4 components.
My aim was to produce a very gen-
eral set which would wrap the
OpenGL API into a Delphi-esque
form. My focus for this exercise is
on managing the primitives within
Delphi. Just as a Delphi user can
revert to the Windows API when
required, so a user of these compo-
nents can revert to the OpenGL
API. I will assume you have read
the previous articles in The Delphi
Magazine articles on OpenGL (in
Issue 28, December 1997, and Issue
34, June 1998).

Note that the code included with
this article is my development
code. It has a number of areas still
undeveloped and a number of
areas not discussed here. The dem-
onstration application has a simple
control form which allows the test-
ing of the components and also
demonstrates how to interface
with the components. It is fair to
say that the code is not as widely
tested as I would like (maybe you
could give me some feedback).
However, the basic OpenGL
management is in place and I feel it
is worth sharing at this stage.

➤ Figure 1



10 The Delphi Magazine Issue 42

Some Of The Basics
I wanted to construct a basic
Delphi component which would
allow me to use OpenGL painlessly.
To do this, it is first necessary to
understand the OpenGL system as
implemented in Windows.

OpenGL is a 32-bit API developed
and released in 1992 by Silicon
Graphics Inc (SGI). OpenGL is now
an open standard with enhance-
ments decided by the OpenGL
Architecture Review Board (ARB),
whose founding members
included SGI, Digital Equipment,
IBM, Intel and Microsoft.

OpenGL has 120 core functions
which are common across all the
supported platforms. The conven-
tion adopted for the calls is to
begin them with gl, for example
glVertex3d. This core is supple-
mented by a set called the GL Util-
ities, which can are identified by
the glu prefix. For Microsoft to
implement OpenGL in Windows
(95/98/NT) they needed to supply a
further set which would manage
the basics of the screen buffers and
the key interface to the OpenGL
session. These are known as the
wiggle functions, as they begin with
a wgl prefix.

The OpenGL library comes as
two DLLs: OPENGL32.DLL and
GLU32.DLL. On NT and Windows 98
these are installed automatically
with the operating system. On ear-
lier versions of Win95 you had to
download them from Microsoft’s
website. The writers of OpenGL,
Silicon Graphics Inc, have also
written their own Windows ver-
sions. You can find these library
DLLs on the web and, if you wanted
to test them, you would have to
‘hook’ them into the OPENGL.PAS
unit. They are called OPENGL.DLL
and GLU.DLL. SGI have put in some
speed improvements which are
also linked to their Cosmo Worlds
initiative.

To connect to the OpenGL
library the Inprise folk have pro-
vided a unit called OPENGL.PAS.
This unit combines interfaces to
the OPENGL32.DLL and GLU32.DLL
libraries. The only shortcomings I
have found with this interface are
firstly that the OpenGL library is at
version 1.2 while the OPENGL.PAS
interface supports only 1.1, and
secondly that some of the declared
data structures are not to my per-
sonal taste. I have written an inter-
face for the extra functionality
provided in 1.2, which I have not
yet fully tested (see OPENGL12.PAS
on the disk).

To interact with an OpenGL ses-
sion you need to cover the follow-
ing areas. The main interaction is
through a window. Since Windows
developers know all about device
contexts, Microsoft introduced the
rendering context. Just as the
device context links to a drawing
device so the rendering context
links to an OpenGL session. You
may want to build more than one
window which is running an
OpenGL session within your appli-
cation. Each OpenGL window ses-
sion will have its own unique
rendering context. However, only
one rendering context can be cur-
rent at any one time. This means
that before carrying out any ren-
dering the rendering context needs
to be made current. OpenGL also
supports multithreading and
client/server operation (which are
beyond the scope of this article).

One strategy for managing
OpenGL is to generate a rendering
context each time a window needs
to repaint. The disadvantage of
this is speed. A second approach,
which is more memory hungry, is
to create a rendering context
during window creation and hold
onto it for the life of the window.
This also implies holding onto the
device context (a no-no with Win-
dows 3.x but not such a problem in
Windows 95/98/NT).

To create a rendering context
you first need a window handle
then the device context. If you
have a valid window handle,
device context and rendering
context then your OpenGL session
is up and running.

The basic Windows events to
manage include the following.

On Create. Before the window is
created the correct style and
format need to be chosen. I have
tackled this by overriding the
CreateParams procedure and
setting the style flags, as shown in
Listing 1.

Once the window, associated
handle and device context are cre-
ated then the rendering context
needs to be created. To do this
first the pixel format of the window
needs to be set. At first I thought I’d
handle this process by overriding
the CreateHandle procedure, as
this is the point where a valid
window handle exists. However, I
have found it more effective if I
override the CMShowingChanged
message and build the rendering
context just prior to the window
being shown for the first time.

The process of building a pixel
format is to first set up a basic
request record with stuff like how
many colours we would like. The
pixel format can only be set once
for a given window. Listing 2 shows
the basic settings and calls.

The software chooses the clos-
est display that the hardware can
manage. Your hardware may only
support 8 bits for colour, so an
appropriate pixel format will be
chosen. There may also be a need
to set up a colour palette. Set the
pixel format and you are ready to
create the rendering context with
wglCreateContext, passing the
device context of the new window.

On EraseBackground. This event
must be handled to let Windows
know that OpenGL will clear the
window to prevent flicker.

On Paint. This is the core to the
creation of the OpenGL image and
will be covered later. The windows
rendering context must be made
current otherwise no rendering
will take place.

On ReSize. When the window is
resized the OpenGL session must

➤ Listing 1

procedure TAbstractOpenGL.CreateParams(var Params: TCreateParams);
begin
inherited CreateParams(Params); { call the inherited first }
Params.Style := WS_CHILD + WS_CLIPCHILDREN + WS_CLIPSIBLINGS + WS_BORDER;
//set up the windows style flags MUST have ClipChildren and ClipSiblings
Params.WindowClass.style := CS_VREDRAW + CS_HREDRAW + CS_DBLCLKS + CS_OWNDC;
// set up the windowclass style MUST have VRedraw, HRedraw and OwnDC

end;



12 The Delphi Magazine Issue 42

be notified of the new location and
dimensions. This is done by over-
riding the WMSize event and setting
the glViewport appropriately.

On Destroy. Prior to the shut-
down of an OpenGL window, the
rendering context must be made
not current then shut down:

wglMakeCurrent(...);
wglDeleteContext(...);

The normal window shutdown can
then take place.

Delphi OpenGL Components
Figure 2 contains a basic listing of
the components created in the
GLDemo application on the disk,
which demonstrates the use of the
main component. This application
has a simple tool form which
allows you to explore the current
features. A number of test scenes
are pre-built. I have put this
together as a basic testbed. Obvi-
ously these components would be
linked differently into production
applications, probably as compo-
nents dropped onto a form.

3D Drawing With
TCustomOpenGLWindow
I believe that the approach to, say,
drawing a 3D line on the screen
should be similar to drawing a 2D
line. However, to get this function-
ality implemented I needed to step
back a little.

Generally, if a new component
needs a window handle and device
context, as an OpenGL session
does, the ancestor would be a
TCustomControl. I found, though,

that to manage the specifics of
drawing to a high resolution
bitmap it was better to descend
from the TWinControl and manage a
GDI canvas myself.

If a Delphi programmer wants to
draw onto a graphics-capable com-
ponent then a Canvas will imple-
ment all the detail of the drawing. I
have taken this tack with a GLCanvas
implementing the 3D rendering
and a standard Canvas handling the
normal painting.

Why do I need both? The draw-
ing logic I have implemented
allows a programmer to draw onto
the 3D OpenGL window in any or all
of the following steps.

Step 1: OpenGL 2D background
rendering. This is used to draw
things at the back of the scene, for
example a reference grid. Drawing
here may be hidden by later draw-
ing in front and so appears to be
always at the back of the rendered
scene. It is not a true 2D drawing
surface, but a 3D surface aligned to
the screen and with a depth of 1 GL
unit. Objects will appear if the Z
value is between -1 and 1 and the X
and Y fall within the screen
boundaries.

Step 2: OpenGL 3D main render-
ing. All 3D objects within the scene

are projected onto the screen. The
OpenGL pipeline has the depth
culling enabled, so sorting objects
by distance from the viewer.

Step 3: OpenGL 2D foreground
rendering. Any foreground 2D
objects always sit over, or at the
front of, the scene, for example
title blocks or text labels. The
same logic applies as for the 2D
background.

Step 4: Standard Windows 2D GDI
draw. This is normally thought of
as the ‘paint’ of the window. This
can be used instead of step 3 above
for text labels. This painting will
overlay all drawing done in steps 1
to 3. Most OpenGL texts state that
you cannot use the GDI if you are
double buffering; however, the
trick is to finish all OpenGL
rendering, swap the buffer into the
screen (or ‘front’ buffer in OpenGL
parlance), then make the GDI calls.

The steps above also indicate
the sequence of drawing. Listing 3
is the implementation of the
rendering process.

All the rendering steps (steps 1
to 3 inclusive) are handled by the
OpenGL pipeline, which involves,
without some serious interven-
tion, the recalculation and redraw-
ing of the entire screen. This is not
terribly efficient if we want to draw
only a temporary mouse drag
image or a zoom-to rectangle. By
using the GDI the programmer can
draw temporary data directly onto
the Canvas without the penalty of a
complete screen rebuild. If you
enable the basic scene in the demo
then you will see a line and text
which will never move. This is an
example of using the Windows GDI.

I have also implemented a
Head-Up-Display (HUD) hook

➤ Figure 2

➤ Listing 2

with fAPPFD do begin              // this is a pre-decalared data type
nSize:=SizeOf(fAPPFD);
nVersion:=1;                    // Must Be  this value
dwFlags:=(PFD_Draw_To_Window or // rendering to a window
Pfd_Support_OpenGL or         // supporting OpenGL
pfd_swap_copy or              // swapcopy will swap in a buffer but keep copy
PFD_DOUBLEBUFFER) ;           // for smooth animation and screen redraws

iPixelType:=PFD_TYPE_RGBA;      // see current settings in GLFuncs
cColorBits:=24;                 // 24 bit colour (can be 8-32)
cDepthBits:=16;                 // manage the depth buffer with 16 or 32 bits
cStencilBits:=1;                //need only 1 bit for the stencil buffer
cAccumBits:=32;       //32 bits for extra precision in the accumulation buffer
iLayerType:=PFD_Main_Plane;     //no choice in Windows

end;
// find the closest fit to the requested
fPixelFormat:=ChoosePixelFormat(fRenderDC,@fAPPFD);
Result:=SetPixelFormat(fRenderDC,fPixelFormat,@faPPFD); //set the pixel format



February 1999 The Delphi Magazine 13

which can be used to display rele-
vant data (such as frame rate) over
the scene. By switching the demo’s
move mode to rotate and clicking
and dragging you can see the appli-
cation of the HUD and GDI. Notice
also that the window will respond
as normal to mouse messages.

To implement the rendering
steps I surfaced individual calls
through appropriate event hooks
and coded the drawing onto the
owning form (or the user could
create a descendant of the class
and override the specific calls).
The events have custom event pro-
cedures defined in the header of
the GLWin unit.

An important thing to remember
is that the four rendering steps use
different coordinate systems.
Firstly, the OpenGL 2D background
and 2D foreground use pixel coor-
dinates, which are the same as the
Canvas. However, OpenGL defaults
to the origin being the lower left
corner of the window with positive
Y up the screen. The screen units
are OpenGL units (type double)
which will be rounded to effective
pixel coordinates. The GLCanvas
has been set up to handle draws to
both 2D and 3D OpenGL modes.

Secondly, the 3D rendering uses
a cartesian coordinate system

comprising X, Y and Z (double)
values encapsulated in a TGLPoint
record type. X corresponds to the
East direction, Y corresponds to
the North direction while Z is the
Up direction. How these appear on
the screen will be controlled by the
viewer position. A simple axis can
be turned on in the demo which
will display the current North, East
and Up directions.

Thirdly, the Canvas will use the
standard windows coordinate
system with the origin at the top
left corner and the positive Y
direction down the screen.

In the GLFuncs unit you will find a
simple class (TLinkPoint) to help
handle the three modes.

OpenGL Primitives
The basic 3D constructs in OpenGL
are the 3D point, 3D line, 3D trian-
gle (sometimes called a polygon),
bitmap and texture. Everything
OpenGL does in 3D rendering is
based on multiples or combina-
tions of these. The same type of
structure will apply for all primi-
tives, so I will only discuss the 3D
line (implementations of the other
primitives are in the TGLCanvas).

Listing 4 shows the code to draw
a 3D line into an OpenGL session.
Three basic OpenGL functions are
called to draw the line. The
glBegin(GL_LINES) call informs the

OpenGL session that a sequence of
OpenGL drawing functions are to
follow which form the basic 3D line
primitive. Although I have only
included the vertex points of the
line in the glVertex3d(X,Y,Z) com-
mand, I could have specified the
colour of each vertex and could
even have included a normal for
each vertex. A feature which the
GDI doesn’t offer is the ability to
set the colour of each vertex of a
line. OpenGL will smoothly change
the colour along the line. The
GL_LINES sequence is ended by the
glEnd function. As the name sug-
gests, I could also specify a large
number of lines enclosed within
one glBegin..glEnd sequence.

This is all very well if you want to
get down to the API and really play
some tunes. However, to draw a
basic line in the GDI I simply call
TCanvas’ MoveTo and LineTo com-
mand sequence. This is how I have
implemented the basic 3D point,
3D line and 3D triangle drawing in
the TGLCanvas. A call to the
TGLCanvas with a MoveTo and LineTo
will produce a 3D line from the
MoveTo location in 3D to the LineTo
location (see Listing 4). There is a
little more housekeeping done in
the TGLCanvas class and so I would
recommend using it where possi-
ble, or at least studying the code.
This is important when creating a

➤ Listing 3

Procedure TCustomOpenGLWindow.GLRenderWindow(
DoSwap : Boolean);

Begin
fCanvas.Lock;  // lock the canvas from others
Try
If not fRebuildneeded then begin
If DoSwap then begin
//If swap copy is enabled then swap buffers
// else need to rebuild
If fpfd_Swap_Copy and fValidBuffer
and not fDrawToOther then
//some systems allow for a buffer swap others not
// swapbuffers is the Windows implementation
SwapBuffers(fRenderDC)

else
fRebuildNeeded:=True;

end;
end;
If fRebuildNeeded then begin
Clear3DCursor;    //Tidy up extra construction lines
DoMoveTidyUp;
if f3DCursorOn and not fGDIGeneric then
Cursor := crnone;  //set up the cursors

fRebuildNeeded := False;
fValidBuffer := False;  //reset the flags
If doswap then
ClearScreen;  // clear the Open GL screen buffers

SetUpViewingTransform;
GetViewPortGrid(glGridType(fViewmode),20);
// calculate the reference grid data
SaveState(stDrawing);
GLRender2DBackGround;
RestoreState;
// draw background, note save and restore of GL state
glPushMatrix();
SaveState(stAll);
// set up the modelview transform for 3D drawing

glListBase(0);
// make sure Display list base is zero
Case  fRenderMode of
rmQuick : CallList(fGeneralLists+dlQuickRenderMode);
else
CallList(fGeneralLists+dlFullRenderMode);

end;
// set GL state to handle current render mode
Do3DRenderScene;      // do the 3D rendering
DrawSelectedPoints;   //draw points selected via tools
DrawSimpleAxis;
RestoreState;
glPopMatrix();        // tidy up after 3D render
SaveState(stDrawing);
GLRender2DForeGround;
RestoreState;    // Call 2D paper space render routine
SaveState(stDrawing);
// do HUD draw before the glflush swapbuffer
DrawHUDDisplay;
RestoreState;
glFlush;              // Flush the OpenGL Pipeline
If DoSwap then begin
If not fDrawToOther then begin
If SwapBuffers(fRenderDC) and fGDIGeneric
and fpfd_Swap_Copy then
fValidBuffer:=True;

end;
end;
// when all rendering to Back Buffer fiished need to
// swap rendered scene into front buffer

end;
Finally
if f3DCursorOn and not fGDIGeneric then
Cursor:=crdefault;

fCanvas.UnLock;       // unlock the canvas
end;

end;



14 The Delphi Magazine Issue 42

metafile (as I discuss later in the
article).

I have tried to model the
TGLCanvas on the TCanvas, with the
exception that you don’t need to
deal with pens, brushes or fonts.
OpenGL does not use these con-
cepts. The OpenGL session is a
state machine which will retain the
current state until the value is
changed. Most state values can be
queried and changed as required.
Also the current state can be saved
and later restored. To draw with a
green colour I would set the state
using, for example, the function
glColor4fv(@glGreen). Any further
drawing would be in this colour
until the colour is changed. I have
allowed the user to set the drawing
colour, the line style and the line
width as properties of the
TGLCanvas. This class will then
manage the setting of the appropri-
ate values when drawing a line.

A point to note is to always
consider the maximum or mini-
mum values of states within the
OpenGL session. If you try to set a
state to outside the valid range, the
session will always ‘clamp’ the
values for you, but this can be a
little disconcerting. For example,
in some OpenGL implementations
the maximum size of the viewport
may be restricted (my Diamond
FireGL 3000 allows a maximum
viewport of 4096 by 4096 pixels).

Bitmaps And Textures
I won’t spend much time on this
subject. Bitmaps and textures can
provide detail to the scene being
rendered. They can also be used to
optimise the rendering process.

Replacing a complex set of poly-
gons with a bitmap or texture can
speed scene processing while still
producing an impressive image.

The OpenGL graphic pipeline is
all about converting a set of 3D con-
structs to a screen image. In
essence this is achieved by
projecting the 3D constructs onto
the screen and calculating which of
the screen pixels the construct
image will fall on. This calculation
includes, among other things,
deciding if the construct can be
seen in this window, the colour and
even which construct is in front of
another. At the end of the process
is a display buffer containing the
final screen pixels. The folk at SGI
have provided direct access into
this buffer for both reading and
writing.

Thus it is possible to add a
bitmap directly into this buffer,
effectively drawing a bitmap onto
the screen. Textures are a little
more complex as the texture can
be attached to a polygon and thus
wrapped or warped depending on
the view of the construct at the
time.

I have not included any bitmap
drawing in the demonstration
code. However, I do read a bitmap
from the screen buffer when I
create a clipboard bitmap image
and the basic concepts are the
same.

The procedure getBitMapImage
will return a TBitmap filled with the
current scene read directly from
the screen buffer. The things which
are important here are the basic
OpenGL settings to be able to
unpack the image and the fact that
the RGB values are stored in the
opposite order for a bitmap and

need to be reversed. The bitmap
data is read into a temporary array
for the RGB swap then a bitmap
compatible stream is created.

Text
As I mentioned, OpenGL does not
directly handle Windows fonts.
The reason for this (and many
other differences) stems from the
requirement for the OpenGL API to
be portable between operating
systems and platforms.

Another consideration is that
generally text is a 2D construct
(that is, it has no depth) which
could be problematic to manage in
a 3D environment. However,
Microsoft have provided two dif-
ferent mechanisms for construct-
ing text within the OpenGL
session.

The first provides 3D text con-
structs which are either a series of
polygons or a series of lines
constructed from an existing
TrueType font. The polygons/lines
include a depth component and
thus are 3D. In the demonstration
program (Figure 1) the OpenGL
text is constructed using this tech-
nique. If you rotate the view then
you will see the side and back of
the text string.

The font is based on Arial. As
with the 3D line the colour is the
current colour, the shading is the
current shading setting, etc.

Behind the scenes a Microsoft
OpenGL function wglUseFont-
Outlines constructs a set of dis-
play lists (display lists allow the
pre-building of 3D objects thus
saving time when recalculating a
scene) and a set of glyph metrics.
To display a text string the
OpenGL function:

glCallLists(length(aST),
GL_Unsigned_Byte,@aST[1]);

is used, with aST being the text
string.

Of course there is a little house-
keeping involved. As with the 3D
line I have provided a TGLCanvas
method of drawing text. The
TextOut3D takes care of this. This
call currently takes a 3D position
as the start point for the text and a
scale value for the size in 3D units.

➤ Listing 4

Procedure TOpenGLCanvas.LineTo(aPt:tGLPoint);
Begin
glLineWidth(fLineWidth);  //set line width (stored by the GLCanvas)
glColor4fv(@fColor);      //set line colour  (stored by the GLCanvas)
//use the glPassthrough to signal a line width when creating a metafile
glPassThrough(1000+fLinewidth);
glBegin(GL_Lines);        //call the OpenGL Start line
If f3DMode then begin
//uses current point as start point of line (stored by the GLCanvas)
glVertex3dv(@fCurrentPoint);
glVertex3dv(@aPt);      //pass pointers to the 3D points data
//passing pointers to data is faster than passing the data!!!!

end else begin
glVertex2dv(@fCurrentPoint);
glVertex2dv(@aPt);      //pass through pointers signalling 2D data

end;
glEnd;                    //close the OpenGL begin
MoveTo(aPt);  // set the glCanvas current point to the end point of the line

end;



16 The Delphi Magazine Issue 42

It should also take some rotation
information as the text string can
be rotated into any position. Cur-
rently the text is drawn lying in the
XY plane and parallel to the X axis.

The second method of providing
text within the OpenGL session is
to use text bitmaps. Using the
wglUseFontBitmaps call a display list
of text bitmaps can be created.
This text will be a 2D text and will
be always drawn in the plane of the
screen. I have implemented this
text in the text values that can be

toggled on and off with the refer-
ence grid. Again I have provided
the functionality through a
TGLCanvas call TextOut2D.

The downsides of using OpenGL
text include the memory it takes to
store a set of complex polygons or
lines for the 3D font, the memory
needed for the font bitmaps and
the time it takes to recalculate the
data should you want to reset the
font style. I have implemented a
one-at-a-time text font so that I can
provide some text yet keep the

overhead to a minimum. There
isn’t the font flexibility you get
with the GDI.

However, don’t forget that
should you choose to write text
with the normal GDI then all the
font and text capability is available
at this ‘painting’ level.

Saving Rendered Images
So far we have focused attention
on producing an image on the

Procedure TCustomOpenGLWindow.getBitMapImage(aBP:tBitMap);
var
BitsMem     : pointer;
BmInfo      : tBitmapInfo;
bitsize, WinWidth, WinHeight, scanWidth, T1,T2 : DWord;
aRGB        : pGLRGB;
temp        : GLUByte;
tDC         : HDC;
TempBitMap  : HBitMap;
aMem        : TMemoryStream;
Info        : TBitmapFileHeader;
InfoSize    : DWord;
InfoHeader  : TBitMapInfoHeader;
Procedure SwapTheRGBValues;
Var
iVal,jVal : DWord;

Begin
//swap bytes as RGB values are in reverse order
T1:=LongInt( Bitsmem);
For ival:=0 to WinHeight-1 do begin
T2:=T1+(ival*ScanWidth);
aRGB:=pGLRGB(ptr(T2));
For jval:=0 to WinWidth-1 do begin
If aRGB^[1]<>aRGB^[3] then begin
//only swap if the values are different
Temp:=aRGB^[1];
aRGB^[1]:=aRGB^[3];
aRGB^[3]:=Temp;

end;
t2:=t2+3;  // move to the next set
aRGB:=pGLRGB(ptr(T2));

end;
end;

end;
Begin {getBitMapImage}
//quit if not valid to build
If not assigned(aBP) then
exit;

If (fRenderDC=0) or (fHRC=0) then
exit;

// ensure the GL session is enabled
If not enableGL then
exit;

//set up the BMF info and data structures
FillChar(BmInfo,SizeOf(BmInfo),0);
WinWidth:=  fviewport[3]; //width of current GL screen
WinHeight:= fviewport[4]; //height of current GL screen
ScanWidth:=(WinWidth)*3; // scan width for the bitmap
//need to fix alignment to 4 byte
ScanWidth:=(ScanWidth+3) and $FFFFFFFC;
//calculate the memory size needed for the bitmap
BitSize:=ScanWidth*(WinHeight);
glFinish;  // flush the GDI pipeline
// set up the gl  read
If not fDrawToOther then
glReadBuffer(GL_Back)

else
glReadBuffer(GL_Front);

glPixelStorei(GL_PACK_ALIGNMENT,4);
glPixelStorei(GL_PACK_ROW_LENGTH,0);
glPixelStorei(GL_PACK_SKIP_ROWS,0);
glPixelStorei(GL_PACK_SKIP_PIXELS,0);
Try
// read the glpixels from the video buffer
// Allocate memory to read pixels into
GetMem(Bitsmem,bitsize);

Except
on EOutOfMemory do
Bitsmem:=nil

else
Raise;

end;
If BitsMem<>Nil then begin
// get the bits data
glReadPixels(0,         //X

0,         //Y
WinWidth,  //Width

WinHeight, //Height
GL_RGB,    //Format of data read
GL_UNSIGNED_BYTE, //Type of data
Bitsmem);  // pointer to memory storage

SwapTheRGBValues;
// reverse the order of the RGB values
TDC:=CreateDC('Display',nil,nil,nil);
// attempt to create a DIB bitmap handle
If TDC<>0 then begin
With BmInfo.bmiheader do begin
biSize:=SizeOf(TBitMapInfoHeader);
biWidth:=WinWidth;      //width of the bitmap
biHeight:=WinHeight;    //height of the bitmap
biPlanes:=1;            //always 1
biBitCount:=24;         //24 bit colour for bitmap
biCompression:=BI_RGB;  //No compression
biSizeImage:=BitSize;   //size of the image
biXPelsPermeter:=2952;  //75dpi
biYPelsPermeter:=2952;  //75dpi
biClrUsed:=0;
biClrImportant:=0;

end;
//set up the Bitmap info header
TempBitMap:= CreateDIBitmap(tDC,BmInfo.bmiheader,
cbm_Init, Bitsmem, bmInfo,DIB_RGB_COLORS)

end else
TempBitMap:=0;

try
If tempBitMap<>0 then begin
//select bitmap into the DC
SelectObject(TDC,TempBitMap);
//assign the bitmap to the tBitmap handle
aBP.Handle:=TempBitMap;

end else begin
//fail on the BID create handle then
// manually build the bitmap
FillChar(Info,SizeOf(Info),0);
FillChar(InfoHeader,SizeOf(InfoHeader),0);
With Info do Begin
bfType:=$4D42;
InFoSize:=SizeOf(InfoHeader);
bfSize:=sizeOf(info)+ InfoSize+ bitsize;
bfOffBits:=sizeOf(info)+ Infosize;

end;
With InfoHeader do Begin
biSize:=SizeOf(InfoHeader);
biWidth:=WinWidth;
biHeight:=WinHeight;
biPlanes:=1;
biBitCount:=24;
biCompression:=BI_RGB;
biSizeImage:=BitSize;
biXPelsPermeter:=2952;//75dpi
biYPelsPermeter:=2952;//75dpi
biClrUsed:=0;
biClrImportant:=0;

end;
aMem:=TMemoryStream.Create;
aMem.Write(Info,SizeOf(info)); // write info block
//write the information header block
aMem.Write(InfoHeader,SizeOf(InfoHeader));
aMem.Write(BitsMem^,BitSize); //write pixels data
aMem.Position:=0;  //reset the stream
//load theimage into the tBitMap
aBP.LoadFromStream(aMem);
aMem.Free;  //tidy up

end;
Finally
//Tidy up
If TDC<>0 then
DeleteDC(TDC);

FreeMem(Bitsmem,bitsize);
end;

end;
GetError;    // check for GLErrors

end;

➤ Listing 5



February 1999 The Delphi Magazine 17

screen. Most Windows applica-
tions support the clipboard for
transferring data or saving data. It
would be sensible if our rendered
image could be transferred to the
clipboard. This logic will also pro-
vide the mechanism for saving the
graphic image to disk.

To implement this type of action
firstly the data types need to be
selected. A graphic image can be
copied to the clipboard using a
bitmap or metafile format. I have
implemented both as there are
advantages and disadvantages to
be considered.

A bitmap represents the pixel
data and so is reasonably easy to
read from the screen buffer using
the supplied glReadBuffer routine.
The downside is the potential size
and detail of the image. Higher
detail means the data set needs to
be larger. Of course there are com-
pression techniques which can be
applied later, but initially we need
to manage the raw pixels. Although
an 800x600 image looks good on a
screen it is small when copied to a
printer with a resolution of 600dpi

and will suffer badly if it is
stretched.

I have implemented the creation
of a bitmap from the current
screen data in the getBitMapImage
call. This will take a TBitmap and fill
it with the current scene data (see
Listing 5). There are three key
aspects to this call. Firstly, set the
OpenGL session variables for cor-
rect pixel reading. Next, read the
pixels into a suitable buffer and
then swap the red and blue values.
Finally, copy the data into the sup-
plied TBitMap.

Often an image comprises large
areas of a single colour, or is
sparsely populated with lines, as is
the case of basic engineering draw-
ings. This leads into the second
method of image transfer, the
metafile. In essence this comprises
a list of drawing instructions. The
problem here is that OpenGL draw-
ing instructions mean nothing to a
metafile or the device which will
receive the instructions. We need a
means of translating OpenGL draw-
ing calls into standard GDI calls.
The benefit of the metafile is size

but the downside is that the GDI
can’t handle the subtle rendering
achieved by OpenGL. This can
mean a loss of detail in the final
image. OpenGL bitmaps, such as
bitmap text, need special handling.

I have managed the creation of a
metafile in the getMetaFileImage
call. As with the getBitMapImage,
this call will return the metafile
filled with the current image.
There are three key aspects to this
call. Firstly, set up the OpenGL
state variables including the
RenderMode. By setting the
RenderMode to GL_FEEDBACK the
OpenGL session will render to a
buffer rather than the screen. The
buffer is filled with the basic
screen data from which GDI calls
can be created. For example, a 3D
Line will be projected onto the
screen viewport. If any part of the
line appears on the screen then the
buffer will contain the location of
the start and end of the line cor-
rectly clipped, if needed, to the
screen boundary. Next, re-render
the image to the feedback buffer
rather than the screen. The



18 The Delphi Magazine Issue 42

current screen buffers (that is the
screen image) will be unaffected
by this re-rendering. Finally, con-
vert the feedback buffer data to
GDI calls. This is carried out in the
utility call DrawFeedBackDataTo
Canvas at the bottom of Listing 6.
An important part of this conver-
sion is the GL_PASS_THROUGH_TOKEN
which is a user-defined value
passed through to the buffer. I use
this to set some of the GDI values
which the feedback buffer does
not contain (eg line width). I have
not yet implemented a bitmap nor
the pixel functions into the GDI.

➤ Below and facing : Listing 6

Function TCustomOpenGLWindow.getMetaFileImage(aMF:tMetaFile;
UseMFHeight:Integer; XScale,YScale: Double): Boolean;

var
TempMFC         : TMetaFileCanvas;
Buffer          : Pointer;
fFeedBackData, Step : Integer;
GotAllTheData   : Boolean;
BufSize         : Longint;
tHt             : Integer;
oldCanvas       : TCanvas;

Begin
Result:=False;
If not assigned(aMF) then
exit;

Case  UseMFHeight of
0 : tHt:=Height;
1 : tHt:=aMF.Height;
2 : tHt:=aMF.mmHeight;

else
tHt:=Height;

end;
TempMFC := TMetaFileCanvas.CreateWithComment(
aMF, 0, 'OpenGL App','GL Scene');

//create a metafile canvas
GotAllTheData:=False;
Step:=1;
oldCanvas:=fCanvas;
fCanvas:=TempMFC;  // swap in a temporary canvas
GetViewPortGrid(glGridType(fViewmode),20);
BufSize:=fbBufferSizetiny;
Repeat
If Step>1 then
BufSize:=BufSize*2;

GetMem(Buffer,BufSize*SizeOf(Single));
glFeedbackBuffer(BufSize,GL_3D_COLOR,Buffer);
// set the render to the feedback buffer
glRenderMode(GL_FEEDBACK);
fRebuildNeeded:=True;
GLRenderWindow(False);    // render the window
fFeedBackData:=glRenderMode(GL_RENDER);
If (fFeedBackData>=0) then begin
GotAllTheData:=True;
DrawFeedBackDataToCanvas(TempMFC, fFeedbackdata,
pFeedBackArray(Buffer), GL_3D_COLOR, tHt, nil,
XScale,YScale);

end;
FreeMem(Buffer,BufSize*SizeOf(Single));
Inc(step);

until GotAllTheData or (Step=4);
Result:=GotAllTheData;
TempMFC.Free;
fCanvas:=oldCanvas;

end;
Procedure DrawFeedBackDataToCanvas(aCanvas: TCanvas;
aSize: Integer; FeedBack: pFeedBackArray;
FeedBackType: Integer; aHeight: Integer;
aBitMaps : tList;       //list of bitmaps to be drawn
XScale,YScale:Double);  // point scale factor

Var
Count,CVal:Integer;
OldPenCol:TColor;
OldBrushCol:TColor;
CUserVal:Longint;
T1,T2:TPoint;
C1,C2:tColor;
UnitVal, TenVal, HundredVal, ThousVal,
CharVal, CharSize: Single;

Procedure ScalePoint(aPt:tPoint);
// scale point value based on supplied XScale,YScale
Begin

aPt.X:=round(aPt.X*XScale);
aPt.Y:=Round(aPt.Y*YScale);

end;
Procedure ReadPoint(Var aPt:TPoint;Var aCol:Tcolor);
Var
R,G,B:Byte;
R1,G1,B1:Single;

Begin
aCol:=clBlack;
aPt.X:=0;
aPt.Y:=0;
aPt.X:=Round(FeedBack^[Count]);
Inc(Count); //jump the XVal
aPt.Y:=aHeight-Round(FeedBack^[count]);
Inc(Count); //jump the Y Val
If FeedBackType>=GL_3D then begin
inc(Count); // jump the Z val
If FeedBackType>=GL_3D_COLOR then Begin
R1:= FeedBack^[Count];
inc(Count); // jump the R val
G1:= FeedBack^[Count];
inc(Count); // jump the G val
B1:= FeedBack^[Count];
inc(Count); // jump the B val
R := Round(R1*255);
G:=Round(G1*255);
B:=Round(B1*255);
// set to black if white
If (R=255)and (G=255) and (B=255) then
aCol:=clBlack

else
aCol:=PaletteRGB(R,G,B);

inc(Count); // jump the A Level
If FeedBackType>=GL_3D_COLOR_TEXTURE then Begin
inc(Count); // jump the  val
inc(Count); // jump the  val
inc(Count); // jump the  val
inc(Count); // jump the  val

end; //GL_3D_COLOR_TEXTURE
end;//GL_3D_COLOR

end; //GL_3D
ScalePoint(aPt);

end;
Procedure ExtractValues(aVal:LongInt);
Begin
UnitVal:=0;
TenVal:=0;
HundredVal:=0;
ThousVal:=0;
CharVal:=0;
CharSize:=0;
If aVal=0 then
exit;

UnitVal:=Frac(aVal/10)*10;
TenVal :=Frac(aVal/100)*100-UnitVal;
CharVal:=Frac(aVal/1000)*1000;
HundredVal:=CharVal-TenVal-UnitVal;
ThousVal:=Frac(aVal/10000)*10000-charVal;
CharSize:=ThousVal;

end;
Procedure  MakePoint;
Begin
Inc(Count);
ReadPoint(T1,C1);
With aCanvas do Begin
Pen.Color:=C1;
MoveTo(T1.X,T1.Y);
LineTo(T1.X+1,T1.Y+1);

end;

References
Computer Graphics. Foley, James, and Andries van Dam et al. Pub:
Addison-Wesley, 1990. An excellent text on the real basics of 3D graphics.

OpenGL SuperBible. Wright and Sweet. Pub: Waite Group Press, 1996.
An excellent reference although all the demo code is in C.

OpenGL Programming Guide: The Official Reference Document for OpenGL,
Release 1. Neider, Jackie, Davis, and Mason Woo. Pub: Addison-Wesley, 1993
(sometimes called the red book). A good general reference.

OpenGL Reference Manual: The Official Reference Document for OpenGL
Release 1. OpenGL Architecture Review Board. Pub: Addison-Wesley, 1992
(sometimes called the blue book). The online help in Delphi 3 and 4 probably
has the same information as this text.

Information on the internet:
The official OpenGL site is www.opengl.org with details of current and pro-
posed specifications. The OpenGL newsgroup (comp. graphics.api.opengl) is
an excellent source of tips and tricks, with heaps of undocumented details.
Members of the ARB often participate, providing real insight into the API.



February 1999 The Delphi Magazine 19

CUserVal:=0;
end;
Procedure MakeLine;
Begin
Inc(Count);
ReadPoint(T1,C1);
ReadPoint(T2,C2);
With aCanvas do Begin
Pen.Color:=C1;
MoveTo(T1.X,T1.Y);
LineTo(T2.X,T2.Y);

end;
CUserVal:=0;

end;
Procedure MakePolygon;
Var
PolyC,j: Integer;
PolyPts: Array of TPoint;

Begin
Inc(Count);
PolyC:= Round(FeedBack^[Count]);
inc(Count);
SetLength(PolyPts,PolyC);
For j:=0 to PolyC-1 Do Begin
ReadPoint(PolyPts[j],C1);

end;
With aCanvas do Begin
Brush.Color :=C1;
If CUserVal>0 then
Brush.Style :=bsClear;

Pen.Color   :=C1;
PolyGon(PolyPts);

end;
Finalize(PolyPts);
CUserVal:=0;

end;
Procedure MakeBitMap ;
Begin
Inc(Count);
ReadPoint(T1,C1);
If assigned(aBitMaps) and (aBitMaps.Count>0) then
With aCanvas do Begin
Pen.Color:=C1;
MoveTo(T1.X,T1.Y);

end;
CUserVal:=0;

end;
Procedure MakeDraw ;
Begin
Inc(Count);
CUserVal:=0;

end;
Procedure MakeCopy ;
Begin
Inc(Count);
CUserVal:=0;

end;
Begin
If not Assigned(aCanvas) then
exit;

If aSize=0 then
exit;

Count:=0;
OldPenCol  := aCanvas.Pen.Color;
OldBrushCol:= aCanvas.Brush.Color;
CUserVal:=0;
Repeat
CVal:=Round(FeedBack^[Count]);
Case CVal of
GL_PASS_THROUGH_TOKEN :
Begin
Inc(Count);
CUserVal:=Round(FeedBack^[Count]);
ExtractValues(CUserVal);
Inc(Count);

end ;
GL_POINT_TOKEN       : MakePoint;
GL_LINE_TOKEN        : MakeLine;
GL_POLYGON_TOKEN     : MakePolyGon;
GL_BITMAP_TOKEN      : MakeBitMap;
GL_DRAW_PIXEL_TOKEN  : MakeDraw;
GL_COPY_PIXEL_TOKEN  : MakeCopy;
GL_LINE_RESET_TOKEN  :
Begin
Case CUserVal of
1001..1009 : aCanvas.Pen.Width:=CUserVal-1000;

else
aCanvas.Pen.Width:=1;

end;
MakeLine;

end;
else
inc(Count);

end;
until (Count>=aSize-2);
aCanvas.Pen.Color   :=OldPenCol;
aCanvas.Brush.Color :=OldBrushCol;

end;

Both a bitmap and a metafile
format are achievable. At the
moment my need is for engineering
style scaled line drawings and the
metafile is essential, with the
bitmap providing the gee-wizz.

The copy-to-clipboard routines
use the screen for the reference. I

have also implemented a routine to
provide a sized bitmap and a larger
than screen metafile for scale
drawing. The former requires the
building of a special rendering con-
text, to render to a bitmap rather
than a window, and the latter
requires the a large viewport.

Conclusion
I hope I have lifted the hood a little
on OpenGL for you. One of the
criticisms of OpenGL is the
difficulty of finding out about the
API’s capabilities. I tend to agree.
However, I have not yet been dis-
appointed in OpenGL’s capability
to meet my needs. With this arti-
cle, the code presented, and some
coaching from the references, I
believe you can make a good start.
If you need to work with 3D graph-
ics, OpenGL merits serious
consideration.

John Hutchings is a Senior Mining
Engineer working on applying PC
technology to mining. He has
spent the last 5 years working
with a small team building
customised CAD based mining
design applications. He is keen to
have feedback from those inter-
ested in this area and can be
contacted at jxh2@orica.com.au
Copyright © 1999 John Hutchings


	Some Of The Basics
	Delphi OpenGL Components
	3D Drawing With TCustomOpenGLWindow
	OpenGL Primitives
	Bitmaps And Textures
	Text
	Saving Rendered Images
	References
	Information on the internet:
	Conclusion

